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Abstract-The fascinating friction drag and heat transfer reduction phenomena associated with turbulent 
flows of so-called ‘drag-reducing fluids’ are not well understood. It is believed that elastic fluid properties 
are strongly related to these phenomena. However, not all drag-reducing fluids are viscoelastic, nor are all 
viscoelastic fluids drag-reducing, suggesting that drag reduction and viscoelasticity are probably incidentally 
accompanying phenomena. Furthermore, the limited research to date has revealed considerable heat 
transfer enhancement (virtually without friction drag increase) in laminar non-circular duct flows with 
certain polymer solutions, and has shown that all utilized fluids were indeed viscoelastic! It is argued here 
that turbulence suppression (i.e. flow laminarization), due to flow-induced anisotropic fluid structure and 
properties, is a determining factor for the reduction phenomena-not the fluid elasticity-while the latter 
may be a major cause for the laminar heat transfer augmentation. It is certain that many challenges in this 

interesting and useful area will keep researchers very busy well into the next century and beyond. 

1. FASCINATING FLOW AND HEAT TRANSFER 

BEHAVIOR OF CERTAIN FLUIDS 

FEW DISCOVERIES in this century in the area of fluid 
flow have created such inquisitiveness as the drag- 
reducing effect of certain additives in common-fluid 
turbulent flows. Investigators have observed as much 
as 80% of friction drag reduction in turbulent pipe 
flow of rather very-dilute solutions (only a fraction 

of a percentile) of certain additives in water or other 
common (Newtonian) fluids. When these solutions 
have been tested in conventional viscometric (laminar) 
flow, non-Newtonian fluid properties have not been 
evident within the experimental capability. The 
density of these dilute solutions was virtually 

indistinguishable from that of the solvents, to many 
significant figures. On the basis of such measured 

phenomenological properties these fluids may have 
been classified as common, Newtonian fluids. The 
hydrodynamicists, who have regarded density and vis- 
cosity as the only relevent properties of the ‘common’ 
fluid flow, have been surprised to find that turbulent 
flows of such dilute soilutions (with virtually the same 
phenomenological properties as the solvents) could 
behave so differently from their Newtonian solvents. 
Also, no viscoelastic properties, such as the phase shift 
or the normal stress differences, have been exper- 
imentally detected for these dilute solutions. However, 
further concentration increase of some polymer addi- 
tives in solvent (e.g. 0.1% and higher) results in 
pseudoplastic and/or viscoelastic solutions. 

Ever since Toms’ discovery (1949) [I] that the fric- 
tion drag of some solutions under turbulent flow con- 
ditions is considerably smaller than the expected 

values, many researchers have been excited about the 
peculiar and often unexpected Aow and heat transfer 

behavior of these drag-reducing, so-called viscoelastic 
fluids. It is now well known that the pressure drop 
and heat transfer associated with the turbulent duct 
flow of certain fluids (see Table 1) are considerably 
lower than the corresponding values for Newtonian 
fluids. Excellent articles on the subject are presented 
by Dodge and Metzner [2], Metzner [3], Lumley [4], 
Virk et al. [5], Hoyt [6, 71, Cho and Hartnett [8], and 
Hartnett [9]. Hence, it is not the intention of this work 
to review existing literature, but to present the most 
peculiar behaviors and applications (see Tables 2 and 
3), while interested readers are referred to the indi- 
cated articles, some of which [3, 681 cite extensive 
references on the subject. Although these ‘miraculous’ 
phenomena have been extensively investigated in 
recent decades, the underlying mechanism producing 
the drag and heat transfer reduction is not yet fully 
understood. Not surprisingly, Bird and Curtiss [lo] 
titled their paper ‘Fascinating Polymeric Liquids’, and 
even the New York Times wrote about these unusual 
and important phenomena in an article “‘Slippery 
Water' Mystery Seems FinaIly Solved” [I I]. Actually, 
the ‘mystery’ remains in clouds of hypotheses, far 
from resolution, primarily for two reasons : 

(1) the classical isotropic fluid mechanics approach 
does not work well for the very complex, flow- 
induced anisotropic fluid structure (even if the 
corresponding motionless fluid is isotropic) ; 
i.e. the constitutive equations are inadequate ; 
and 

(2) the turbulence itself is not yet well understood 
even for ‘common’ Newtonian fluids. 
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NOMENCLATURE 

a, h, c, d constants/coefficients of equation u’ fluctuating turbulent velocity component 
(1) and Table 5 in main-flow direction .Y 

D, hydraulic diameter c’ fluctuating turbulent velocity component 
DI drag increase, equation (3) and Table 6 in cross-flow direction _r 
DIR drag increase ratio, equation (5) and W fluctuating turbulent velocity component 

Table 6 in cross-flow direction z 
DR drag reduction, equation (2) and Table 6 x coordinate in main-flow direction 
DRR drag reduction ratio, equation (4) and .1’, = coordinates in cross-flow directions. 

Table 6 

.f Fanning friction factor, r,,ilpli’ 
GZ Graetz number Greek symbols 

Ff, uniform wall heat flux axially and ;, shear-rate magnitude 
constant temperature peripherally, it 

i '.J shear-rate tensor 
boundary condition ‘,* 1 dimensionless shear rate, equation (6) 

HI heat-transfer increase, equation (3) and Appp pressure drop for a given pipe length for 
Table 6 polymer-solution flow 

HIR heat-transfer increase ratio, equation (5) Ap, pressure drop for a given pipe length for 
and Table 6 solvent flow 

HR heat-transfer reduction, equation (2) and n apparent viscosity 
Table 6 ?Z., anisotropic viscosity, equation (8) 

HRR heat-transfer reduction ratio. equation ‘lo zero-shear-rate viscosity (at very small 
(4) and Table 6 shear rates) 

j Colburn heat-transfer factor, 7X. infinite-shear-rate viscosity (at very large 
Nu/(Re Pr’ ‘) shear rates) 

K power-law fluid consistency index, ‘I* dimensionless viscosity. equation (6) 
rW = k,‘” P fluid density 

n power-law fluid power-law index. 5 ‘./ shear stress tensor 
r = KY” 

NM Nussclt number 
7%’ shear stess at wall. 

Pr Prandtl number 
RU Rayleigh number Subscripts 
Re Reynolds number A asymptotic drag or heat-transfer 

Re* Kozicki Reynolds number, equation (IO) reduction 

f time constant in Powell-Eyring fluid L laminar or extended-laminar (ultimate 

model, equation (6) asymptote) 

I/, I? time-averaged velocity in main-flow T turbulent Newtonian (without drag or 

direction heat-transfer reduction). 

The so-called ‘drag-reducing’ fluids are simul- tube diameter with the hydraulic diameter of a non- 
taneously even stronger ‘heat transfer-reducing’ fluids 

in turbulent flows. The most effective drag- and heat 
transfer-reducing fluids are aqueous solutions of non- 
linked, high-molecular-weight polymers such as poly- 
ethylene oxide and polyacrylamide (see Table 1). 

I. 1. Turbulent, non-circulur duct flow 
Due to the fact that the greatest portion of the 

momentum and heat transfer resistance occurs in the 
narrow sublayer region close to the wall, and the 
velocity and temperature distributions over most of 
the cross-sectional area are relatively flat, it has been 
widely believed that the fully developed turbulent fric- 
tion factor and heat transfer coefficients for a non- 
circular duct flow could be determined by using the 
corresponding circular tube correlations, replacing 

circular duct. Such an approximation is used due to 
the lack of appropriate equations for non-circular 
ducts. As shown by Jones [12], the use of the hydraulic 
diameter in the well-established circular tube relations 
has yielded predictions which deviated from measured 
values up to 20% for large aspect ratio ducts. To 
improve the predictions, Jones introduced a gener- 
alized Reynolds number which is identical to the 
Kozicki Reynolds number Re* (see equation (10)) 
[13], if evaluated for a Newtonian fluid (n = 1). Jones 
demonstrated that the Newtonian circular tube fric- 
tion factor predictions gave excellent results (within 
5% deviations) for rectangular geometry if the circu- 
lar tube Reynolds number is replaced by Re*. Kostic 
and Hartnett [14] extended Jones’ approach to non- 
Newtonian fluids, and their findings have been con- 
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Table I. Drag-reducing additives and their properties 

13s 

Type of additive Characteristic properties 

1. High-polymers 
-Polyethylene oxide (the best) 
-Polyisobutylene (oil-solubIe) 
-Polyacrylamide 
-Carboxymethylcellulose 

2. Soap and surfactant aggregates 

3. Fibers 
-Asbestos 
-Nylon 
-Wood pulp 

4. Solid/liquid particles 
-Thoria 
-Sand and dust particles 
-Droplets in gases 

5. Other natural sources 

The most important features are: macromolecules-high-molecular-weight (lo6 
or higher), linear structure, with maximum extensivity (up to hundreds of thousands 
of extended-length-to-width ratio of a macromo~~ule), excellent solubility. Also 
some other polyelectrohtes are known as drag-reducing agents. 

Low-molecular-weight alkali-metal and ammonium soap molecules form 
aggregates or ‘micelles’ in long-chains. Non-ionic commercial surfactants are very 
good drag-reducers. 

Asbestos fibers are extremely long (hair-like). Nylon fibers are shorter (length- 
to-diameter ratio about 50). Wood pulp suspensions in water reduce turbulent 
friction. Drag reduction is less in fiber-gas suspensions. 

Turbid rivers flow faster than when clear. Pneumatic systems have higher flow 
rates when dust-laden than with clean air only. Suspension of thoria in water 
show drag reduction. Even droplets in gases reduce friction. 

Natural gums (tike guar), algae and bacteria usually produce copious, high- 
molecular-weight polysaccharide. 

Principal properties of drag-reducing additives 
l Extended length and/or s@cien? mass (inertia) to interfere and suppress turbulent fluctuations, particularly 

transverse ones. 
l R~id~~~ and/or elasticity to suppress and absorb turbulent fluctuations. 

firmed and utilized by Irvine and Karni [15]. The On the basis of very limited available results, the 
latest recommendations on the use of different friction heat transfer behavior of viscoelastic fluids in non- 
factor correlations for the power-law fluids in non- circular channels seems similar to that in circular 
circufar duct flow are given by Hartnett and Kostic pipes. Measured Nusselt numbers of the viscoelastic 

1161. aqueous polyacrylamide solutions flowing turbulently 

Table 2. Known friction and heat-transfer behavior of drag-reducing fluids 

I Friction factor 

2. Heat transfer 

3. Entrance lengths 

4. Transition to turbulence 

5. Mean velocity profifes 

6. Turbulence structure 

7. Other 

Characteristic phenomena 

Considerable friction drag reduction even for minute concentrations (OS p.p.m. of 
polyethylene oxide in water) gives a friction reduction of 40%, which, with increase of 
polymer concentration, reaches the limiting asymptotic value up to SO%, i.e. the solution 
friction drag is only 20% of the pure solvent (usually with higher polymer concentrations). 

Even stronger heat-transfer reduction than friction drag reduction; over 90% of 
corresponding Newtonian values for the limiting asymptotic case. Rarely, this phenomenon 
is useful, as in crude-oil pipelines (smaller losses, i.e. lower viscosity at higher 
temperature). In contrast, heat transfer is increased in boiling and in Iaminar flow through 
non-circular ducts. 

Much longer than the corresponding Newtonian values, on the orders of 100 and 500 
hydraulic diameters for hydrodynamic and thermal entrance lengths. respectively. 

Smoother transition from laminar to turbulent flow, as opposed to abrupt transition of 
Newtonian fluids. Also higher transitional Reynolds number values (much higher than 2000, 
often 5000 or higher). In some cases the ‘onset’ of drag-reduction is encountered. 

Flatter velocity profiles (in central region) than the solvent alone. That is quite the 
opposite from the influence of pipe roughness on the profile. 

Fluctuating u’ velocity component is reduced, while axial component U’ is less affected ; 
though some results are conflicting. Spacing between large-scale slow-streaks is more than 
doubled, and time between the ‘bursts’ (fluid lumps) ejected from the wall region is 
increased ten-fold. 

Cavitation is of a different character and is often greatly reduced. Extensional flows 
through porous media (an application in enhanced-oil-recovery) and jet flows have different 
characteristics than in pure solvent. Several other behaviors of more-concentrated 
polymer solutions, such as die-swell, Weissenberg rod-climbing effect, tubeless siphon, inverse 
secondary flow, etc. are markedly different from Newtonian flows. 
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Table 3. Applications with drag-reducing Ruids 

1. Pipelines The first application of drag-reducers was use of guar in oil-well ‘fracturing’. prcsrntly 
a routine practice. Use of oil-soluble polymers in Tram-Alaska Pineline Svstem 
is the most impressive success of draglrehucing phenomenon. Typical systems achieve 
drag reductions of3&50% at polymer concentrations of IO p.p.m. (0.001%). Coal and 
other slurries, and large central-heating hot-water installations are potential 
candidates, as are many other pipeline systems. 

By adding polymers the storm-sewer flow capacity may be increased by about 30”?$. 
If it is done only during peak demands, such as during storms and floods. it may 
be very cost-effective, thus ciiminating large capital expenditure. 

Water flow rates and jet distances may be increased, or smaller hose-lines mav be 
used. Polymers have been used by fire-fighters in Hamburg (Germany), New- 

York City, and Paris. However, this promising application does not seem to have 
gained wide acceptance (efficiency is a secondary issue in this case). 

Friction-drag reduction may be obtained by ejecting concentrated polymer solutions 
near the ship nose, or through a porous wall, or from an ablating coating. Substantial 
drag-reduction was measured in a water tunnel with ejection of a 500 p.p.m. Polyox 
solution. Major reduction in polymer cost is necessary for commercial ship application 
to be feasible. 

2. Storm-sewer augmentat;on 

3. Fire-fighting 

4. Ocean/river ship flows 

5. Scientific studies 

6. Other 

The friction and heat-transfer reduction phenomena may assist in the studies of 
molecular properties and, as ironic as it may be (since it changes turbulence 
structure), in better understanding of turbulence, a very complex flow phenomenon 
Several other scientific challenges are emerging. 

Attractive and possible applications would include: soluble coatings for rapid sinking 
of oceanographic instruments and other objects; polymer addition to entire city 
water supply if in high demand due to emergency, such as a major fire ; irrigation 
systems augmentation, etc. 

in a 2 : I rectanguiar duct show the same general 
behavior as in the case of turbulent circular pipe flow 

F71. 

1.2. Laminar, non-circular ductJEow 
Contrary to the considerable drag reduction and, 

unfortunately, even larger heat transfer reduction in 
turbulent viscoelastic duct flow, the heat transfer with 
more concentrated polymer solutions (around 0.1% 
and up) in fully developed laminar non-circular duct 
flow. is surprisingly, greatly increased, with virtually 
no friction drag increase. A number of researchers 
have been thrilled about this heat transfer augment- 
ation, which promises great appiication potential 
[l&23]. The observed 200-300% heat transfer aug- 
mentation could not be accounted for by the influence 
of free-convection or temperature-variable fluid prop- 
erties alone. It is hypothesized that a non-gravity sec- 
ondary flow ought to exist in order to justify the 
phenomenon. 

2. EXISTING DRAG REDUCTION THEORIES 

AND ANOTHER VIEW ON THE 

PHENOMENA 

In light of the large reductions in friction and heat 
transfer compared to the corresponding turbulent 
Newtonian flows, it is not surprising that the early 
reports of these phenomena caused a considerable stir 
in the scientific community. At first, it appeared that 
the friction drag reduction phenomenon is miracu- 
lous, energy-savior: as if something is obtained from 
nothing, almost a ‘perpetuum motile’. However, the 

friction-drag and heat-transfer reduction phenomena 
will be enlightened here from a somewhat different 
point of view, with reference to new, so-called ultimate 
asymptotes 1241. The existing theories and the present 
author’s hypothesis about possible mechanisms of 
turbulent drag-reduction are presented in Table 4. 
The first Shear Thinning drag-reduction theory in 
Table 4 has already been discounted ; the second one, 
based on fluid Visco-Elasticity and Normal-Stresses, 
is the most contradictory and questionable. The 
remaining theories are inter-related, centering around 
more or less the same concept: changed (more 
specifically reduced) turbulence a~tivity~structure of 
the flow. Therefore, some comments and analysis in 
that direction are in order. 

A logical question arises : ‘For a given real/viscous 
fluid. channel size, and flow-rate, is there the most 
efficient flow and, if so, what should it be like?‘. The 
answer is rather simple : such flow has to be ‘purpose- 
or goal-oriented’ ; velocities of all fluid particles have 
to be exclusively in the main-flow direction, without 
any components in the other. futile directions (ortho- 
gonal to the main-flow or backwards), like turbulent 
fluctuating components. The former contributes to 
the over-all flow rate-the goal of the flow-while the 
latter do not produce any useful tlow rate, but rather 
dissipate energy only, apparently unnecessarily. The 
most efficient channel flow of any real (viscous) fluid 
would be the corresponding laminar flow at any Rey- 
nolds number value. For such a flow, the friction drag 
would be the minimum possible, just to overcome the 
molecular viscous friction. Therefore, the maximum 
possible turbulent drag reduction would be achieved 
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Table 4. Theories of reduction phenomena 

Theory Description 

1. Shear Thinning 

2. Visco-Elasticity and Normal-Stresses 

3. Molecular ‘Stretching’ 

4. Decreased Turbulence Production 

5. Decreased Turbulence Dissipation 

6. Vortex Stretching 

7. Non-isotropic Properties and 
Turbulence 

8. Laminarization of Turbulent Flow 

Originally it was speculated that near-wall-layer, by virtue of shear-thinning 
may have extremely lower friction coefficient than pure solvent. Later this theory 
was discounted since it was proved that the shear-thinning friction is somewhat 
lower, but not nearly that of drag-reduction friction. 

This may well be the most unfortunate theory. Drag-reducing polymer 
solutions are viscoelastic and show the normal-stress differences, but for 
concentrations extremely high by drag-reduction standards. Very dilute 
solutions do not exhibit any measurable elasticity, nor change of viscocity 
from pure solvent, still they are very strong drag reducers. Also, viscoelastic, 
cross-linked polyacrylic acid (Carbopol) solutions do not show any drag- 
reduction, except for shear-thinning effect. It may well be that viscoelasticity 
does not play any major role in drag reduction, but is merely an accompanying 
property of some drag-reduction fluids. It is known that both viscoelastic 
and non-elastic fluids may produce drag-reduction. 

Greatly extended linear macromolecules in shear direction interfere with 
turbulence, providing a stiffening effect, thus reducing friction drag. Other 
postulates that molecular entanglements is responsible for interfering with, 
and enlarging the sublayer eddies. Some have argued that macromolecules’ elastic 
properties and continuous deformation, like a ‘yo-yo’ effect, are responsible 
for damping small turbulent eddies, storing and recovering otherwise dissipated 
turbulent energy. However, for extremely dilute solutions it seems unlikely 
that such a hypothesis could be valid. 

Some researchers suggest that polymer additives interfere with the production 
of turbulence, and that the reduction phenomena are not due to turbulence 
dissipation but are driven by reduced generation of turbulence. Since the two 
have to be in balance, their roles may be easily mistaken. 

It is the belief of the present author that the turbulence energy dissipation via 
finest eddies are greatly reduced (suppressed) by additives interference, to 
an extent equal to the drag-reduction, while larger eddies and large-scale flow 
instability are present (still turbulent flow), but with different and more favorable 
structure. 

It is postulated that resistance to vortex stretching reduces the mixing and 
energy losses. It is further shown that dilute polymer solutions may have thousands 
of times higher extensional viscosity than the steady-state viscosity, which 
may have a strong influence on drag-reduction mechanism, believed to 
play a major role in a region just outside the laminar sublayer (5 < y+ < 50). 

This is another idea of the present author and is elaborated on in the text. 
Since viscosity is shear-rate dependent and the shear-rate is directional, 
the solution structure becomes anisotropic ; hence viscosity (including 
dynamic and higher-order stress coefficients) has to be anisotropic : for 
shear thinning fluids, it is lower in the flow direction and higher in cross-flow 
directions, thus suppressing considerably the cross-flow fluctuating velocity 
components (especially small-scale eddy fluctuations). 

Turbulence is the ‘wasteful’ dissipation of fluid energy via the finest turbulent 
eddies, thus it directly increases friction drag. Therefore, drag reduction 
is a direct measure of partial flow laminarization. By definition, turbulence 
implies random fluctuations and energy dissipation, otherwise flow instability will 
have some orderly secondary (and unsteady) flow patterns. 

Unanswered questions : 
l Does viscoelusricity have any direct relation with turbulent drag-reduction? 
l Influence of wnll may or may not be crucial since polymers may profoundly modify jets and free turbulence? 
l Internal and external boundary layers may have different influence on drag reduction and an attempt to unify 

the phenomena may be deceptive? 
l Why is “Onset ” of drag-reduction present with some, but not all drag-reducing fluids? 
l Why do additives produce the maximumfriction and heat-transfer reduction asymptotes, but cannot fully 

laminarize flow (Ultimate Drag Reduction)? 
l Why is the asymptotic heat-transfer reduction stronger and occurs for higher polymer concentration than friction 

drag?. and many other questions! 

if all turbulent fluctuating velocity components are mate’ friction-drag asymptote. Incidentally, such flow 
suppressed, or never allowed to develop: if the flow is possible (though difficult) to achieve if the utmost 
is somehow maintained laminar, regardless of the care is taken to avoid any flow disturbances which 
Reynolds number value. This will establish the ‘ulti- will otherwise generate flow instability and turbulence 
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for higher Reynolds numbers [25]. Consequently. if 
drag reduction is observed to be so large as to produce 
a friction drag smaller than in the corresponding lami- 
nar flow, that would warrant some experimental or 
some other fundamental error(s). including use of 

inappropriate values of fluid viscosity. 
Likewise, the heat transfer under the condition of 

extended laminar flow (at any Reynolds number) will 
be laminar, i.e. the absolute physical minimum of heat 
transfer for a given flow rate. This establishes the 

‘ultimate’ heat transfer asymptote for any turbulent 
heat-transfer reduction process. The terms ‘extended’ 

laminar flow and corresponding ‘ultimate’ friction- 

drag and heat-transfer asymptotes refer here to the 
pertinent laminar friction factorfl and heat-transfer 

factor,;, , respectively, regardless of the magnitude of 
the Reynolds number: as if the flow is laminar no 

matter what! These ultimate asymptotes are presented 
in Fig. I. together with other characteristic results 

for Newtonian (subscript T) and asymptotic drag- 
reducing turbulent flows (subscript A). 

polymer solutions, show considerable friction-drag 
and even stronger heat-transfer reduction as com- 
pared to common (Newtonian) fluids. The friction- 
drag reduction increases with an increase of polymer 
concentration up to a certain asymptotic limit. first 
observed by Virk [5]. Similarly, thcrc is an asymptotic 
limit (higher polymer concentration than for friction- 

drag asymptote) for heat-transfer reduction [Xl. Once 
these maximum friction-drag or heat-transfer asymp- 
totes have been reached, further increase in polymer 
concentration does not influence the friction or heat 
transfer coefficients. It is bclicved that these maximum 

asymptotes are functions of the Reynolds number 
only, and are independent of pipe size and polymer 
type, which is not the case for the intermediate (non- 
asymptotic) drag-reducing flows. The maximum 
asymptotic Fanning friction factor (.f’= s,ijplT’) and 
the Colburn heat-transfer factor ( j = NC Rr Pr’ ‘) 

may be approximately expressed. for the Reynolds 
number range of interest, by the familiar and simple 
equations [26] : 

The so-called ‘drag-reducing’ fluids. like certain f’ = cI &” and ,j = c Rr” (1) 

Re 

cd 0.007 

E 

2 0.006 

zi 
F: 0.005 

2 
IL 

0.004 

%‘S IN SCALE 

Doa 

RMK& NUMBER - RE (LOG-SCALE) 

FIG. I. (a) Friction factors of three characteristic flows (in semi-log scale) and presentation of drag 
reduction, increase, and ratio terms (see Tables 5 and 6) ; (b) friction factors--fand heat-transfer,j-factors 

for laminar (L), asymptotic (A), and turbulent (T) flows (see Tables 5 and 6). 
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Table 5. Friction factor and heat transfer ,j-factor equations for different Bows 

Equations ,f=a.Reh 

Flow Coeff. a 6 

Laminar (extended) (L) 16.00 -1.00 
Asymptotic-Virk/UIC (A) 0.59 -0.58 
Turbulent---Blasius/Newtonian (T) 0.079 -0.25 

where the constants a, b, c, d are given in Table 5, 
together with corresponding constants for (‘exten- 

ded’) laminar, and turbulent flow for Newtonian 

fluids (the Blasius equation). If the conventional 
Reynolds number is replaced with more generalized, 

Metzner or Kozicki Reynolds number, equation (1) 
will be valid for non-Newtonian fluids and/or non- 

circular ducts, respectively [27]. 
Originally [7], the drag reduction (DR) was defined 

as pressure drop difference between the solvent (s) 
and polymer solution (p) with regard to that of the 
solvent, DR = 100%(A~ps-A~,)/App,, for a given pipe 
length. However, it is more general to express the drag 

reduction through the corresponding dimensionless 
friction factors; and to express similarly the heat- 
transfer reduction (HR) through the dimensionless 

heat-transfer factors, i.e. 

.,=? 
and HR =jT-/ (2) 

.-r .1-r 

where non-subscripted factors refer to ‘drag-reducing’ 
fluid, while subscript ‘T’ refers to the corresponding 

reference, turbulent Newtonian value, without fric- 
tion-drag or heat-transfer reduction. There is one 

difference between the original pressure-drop drag 
reduction and the friction-factor drag reduction. The 

original drag reduction, defined through pressure 
drops, is based on a constant flow rate (more prac- 
tical), while the drag reduction, defined through fric- 
tion factors, is based on a constant Reynolds number 

(more fundamental). With the increase of polymer 
concentration (and solution viscosity) while keeping 

the flow rate constant, the dimensional pressure drop 

may start increasing after some polymer concen- 
tration level, which is not the case with the dimen- 
sionless friction factor at a constant Reynolds number 

(which requires an increase of flow rate). For very 
dilute solutions (with a viscosity equal to that of 
solvent), the drag reductions defined through the 

pressure drops or friction factors are the same. 
As has been pointed out above, it is fundamentally 

beneficial to analyse friction-drag and heat transfer 
phenomena with regard to the corresponding ultimate 
asymptotic values, i.e. the corresponding ‘extended’ 
laminar values, as new reference. Since the turbulent 
friction and heat-transfer factors of drag-reducing 
fluids are higher than the corresponding extended- 
laminar values, the new terms, friction-Drag Increase 

j = c(h) *Red 

139 

c(Pr) Pr = 1 10 100 d 

4.364. Pr”’ 4.364 2.03 0.94 -1.00 
0.03 0.030 0.03 0.03 - 0.45 
0.023. Pr” ““’ 0.023 0.027 0.031 -0.20 

(DZ) and Heat-transfer Increase (HI) are defined, 
i.e. 

where non-subscripted factors refer to ‘drag-reducing’ 

fluid, while subscript ‘L’ factors refer to the cor- 
responding reference-extended-laminar values-the 
most efficient flow possible for a real (viscous) fluid, 

the ultimate asymptotes. 
The characteristic asymptotic friction and heat 

transfer factors for ‘drag-reducing’ fluids, together 

with the two reference results (extended-laminar and 
Newtonian-turbulent flows) are calculated, using 

equation (1) and Table 5, and presented in Table 6 
and Fig. 1. Also, the conventional drag and heat- 

transfer reduction terms of equation (2) and newly 
defined drag and heat-transfer increase terms of equa- 

tion (3) are calculated for the three characteristic flows 

in Table 6. 
Table 6 reveals that the friction-factor reduction 

associated with the asymptotic limit of a ‘drag- 
reducing’ fluid as compared with the turbulent Newton- 

ian flow, ranges from approximately 52% at Re = 4000 
to 77% at Re = 40 000, while the corresponding drag- 

reductions for the hypothetical (but possible) exten- 
ded-laminar flow (ultimate asymptote) are about 60 
and 93%, respectively. It is advantageous to express 
the asymptotic (or any actual) drag-reduction as the 
ratio to that of the “ultimate drag reduction” of the 

extended laminar flow. This ratio, designated here as 
Drag Reduction Ratio (DRR), see Table 6, represents 

the fundamental drag reduction effectiveness of any 
drag-reducing additive, i.e. solution. Similarly, the 
Heat-transfer Reduction Ratio (HRR) is defined as 
the ratio of an actual heat-transfer reduction to that 

of the extended laminar heat-transfer reduction, the 
latter being the maximum physical possibility (ulti- 
mate asymptote), i.e. 

DRR = DR = .f-f 
DR, fr -.i_ 

and HRR=!!!%?=j,-j 
HR, JT -A 

(4) 

where the nomenclature is explained in equations (2) 
and (3). It is interesting to note that the heat-transfer 
reductions of the ultimate asymptotic (extended-lami- 
nar) flows, and their ratios, are all larger than their 
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Table 6. Characteristic values of drag and heat transfer reduction and increase, and their ratios 

Friction factor Heat transfer j-factor (Pr = IO) 

Re 

4 000 
15000 
40 000 

Re 

4 000 
15000 
40 000 

Rt! 

4 000 
15000 
40 000 

.fL x IO2 fh x IO’ .fT x 10’ j[, x 10’ j4 x IO’ j, x 10’ 

4.00 4.80 9.93 0.51 0.72 5.1 I 
1.07 2.23 7.14 0.14 0.40 3.92 
0.40 1.26 5.59 0.05 0.25 3.22 

Drag reduction Heat transfer reduction 

DR, DR, DRR, HR, HR, HRR,, 

0.516 0.597 0.864 0.859 0.901 0.954 
0.687 0.851 0.808 0.899 0.966 0.931 
0.774 0.928 0.833 0.921 0.984 0.936 

Drag increase Heat transfer increase 

01, DI, DIR, HIA HI, HIR,, 

0.201 ,I.483 0.136 0.418 9.08 0.046 
1.093 5.692 0.192 I.934 28.02 0.069 
2.159 12.97 0.167 4.032 62.61 0.064 

drag-reduction counterparts. The reduction ratios, see 
results in bold in Table 6, are in the 80’s and 90’s 

percentiles for the asymptotic friction and heat trans- 
fer reduction, respectively. 

It is advantageous to analyse the friction-drag and 
heat-transfer reduction with regard to the most effec- 

tive flow possible, the extended-laminar flow, for 
which the reductions are ultimate, i.e. 100%. With 
regard to this new reference, the friction and heat- 

transfer factors of drag-reducing fluids are now larger 
(including the maximum asymptotic values) than the 
corresponding extended-laminar results. The ‘wonder 

miracle’ of drag-reduction is unveiled now in a differ- 
ent, more realistic form: the turbulent flow of these 

‘miraculous’ fluids is actually flow-inefficient (‘un- 

necessarily’ energy dissipative), though not nearly as 
inefficient (dissipative, wasteful) as the common New- 
tonian fluids. The measure of flow inefficiency or tur- 

bulent dissipation of energy is expressed by the newly 
defined friction Drag Increase (DI) and Heat-transfer 
Increase (HZ) in equation (3). Their respective Drag 
Increase Ratio (DIR) and Heat-transfer Increase 

Ratio (HI@ are 

DIR = & = + and ff[R = &? = j 
T L HIT .J-r -.i~ ’ 

(5) 

In light of the new reference, the extended-laminar 

flow, the characteristic results are presented in the 
lower part of Table 6. The physical meaning of the 
Table 6 last-row numbers is : for an asymptotic drag- 
reducing flow at 40000 Reynolds number (Re), the 
drag increase is 2.159, or about an additional 216% 
with reference to the corresponding (same Re) laminar 
flow. Still, this considerable friction-drag increase is 
much less wasteful than the common Newtonian 
flow’s friction-drag, being an additional 12.97-times 
larger, or about 1300% more than the reference lami- 
nar flow at the same Re. These figures yield a drag 
increase ratio of 0.167, meaning that the inefficiency 
of the asymptotic drag-reducing flow is only 16.7% 

of the inefficiency of Newtonian turbulent flow at 
the same Reynolds number. The heat transfer in- 
creases for the asymptotic and turbulent Newtonian 
flows, in absolute measures of the reference laminar 

heat transfer, are higher for an additional 4.032- and 
62.61-times, respectively. Therefore, the heat-transfer 

increase ratio is only 0.064, i.e. the asymptotic heat- 
transfer increase, in addition to the laminar heat- 
transfer, is only about 6% of the usual heat-transfer 
increase associated with the common Newtonian 

turbulent flow, a value considerably smaller than its 
drag reduction counterpart (16.7%). This ‘upside- 

down’ analysis, quite contrary to the conventional drag 
and heat-transfer reduction analysis, may give an 
additional insight into the drag and heat-transfer 
reduction phenomena. 

3. FLOW-INDUCED NON-ISOTROPIC 

PROPERTIES : AN ESSENTIAL FLUID 

MODEL 

A high-molecular-weight polymer dissolved in 

water (or other solvent) builds up a long, macro- 
molecular chain structure, similar to fiber-like com- 
posite substance, a sort of flexible (and partially elas- 

tic) ‘molecular web’, which reinforces the original 
solvent structure [28]. This is reflected in a general 
increase in the fluid-solution viscosity at all shear 
rates, particularly at the lower shear rates (see Fig. 
2). The important difference between a solid fiber- 
composite and a polymer-solution is that the fibers 
are molded (fixed) in the matrix, while the macro- 
molecules may move within the solvent during a flow. 
The latter will change the original solution structure 
and make the viscosity (resistance to flow) shear-rate 
dependent, i.e. the solution becomes the non- 
Newtonian fluid. 

The fluid viscosity is measured in the so-called iso- 
metric flow, where only one component of the shear- 
stress tensor is non-zero, such as in one-dimensional 
flow through a circular pipe, between cone-and-plate 
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Flow-induced 
anisotropicity 
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FIG. 2. Shear-rate dependent viscosity and flow-induced anisotropic structure of an aqueous polymer 
solution. 

or concentric cylinders. Under shearing stresses the 
flexible macromolecular chains, originally randomly 
shaped and oriented in a motionless fluid, realign 
along the shearing layers (see Fig. 2). With the shear- 
rate increase, the macromolecular chains become bet- 
ter aligned and untangled in the flow direction (along 
iso-strain lines); and the original resistance to flow 
(zero-shear-rate viscosity, Q), due to random shape 
and orientation of the chains, is considerably reduced, 
reaching a minimum (infinite-shear-rate viscosity, q_,) 
at some limiting shear-rate after which further align- 
ment and/or entanglement of the macromolecules is 
not possible (see Fig. 2). Therefore, q0 > qrn > q,, the 
latter being the viscosity of the original solvent ; these 
differences are negligible for a very dilute solution 
(Q, z ~7, z qs z constant). The viscosity-shear-rate 
function (relationship) is successfully expressed by the 
Powell-Eyring model 

(6) 
where dimensionless viscosity q* and dimensionless 
shear-rate y* are defined in equation (6). In dimen- 
sionless form r~* = r~*(y*), the Powell-Eyring equa- 
tion is a universal one for any fluid, after the dimen- 
sional equation is scaled with the time constant (f), 
and the zero- and infinite-shear-rate viscosities (qo, 
urn), which are characteristic constants of a particular 
fluid. For example, using equation (6), from the mea- 
sured steady shear-rate viscosity as function of the 
shear rate (see Fig. 2) the constants t, q,,, qrn are 
determined to be 6.1 s, 300 cPs, 3 cPs for a 0.1% 
polyacrylamide aqueous solutions, respectively [29] 
(note : 1 centi-Poise [cPs] = 1 mPa-s). For a narrow 
shear-rate range (often in general for the sake of sim- 
plicity), the viscosity may be approximated by the so- 
called power-law model : r] = q(j) = Kj”- ’ with two 
constants, K and n only. 

According to this author, the major fallacy is made 
when the isometric-flow results are generalized 
(extrapolated) to multi-dimensional flow situations. 
Namely, the measured directional shear-rate ri,, is 
genralized (substituted) by an invariant shear-rate _ 
magnitude $, of the shear-rate 
&Jax,+ &,jax,, i # j}, i.e. through 
variant of the tensor 

i = J(f(K,: A.,)). 

This implies that the fluid viscosity 

tensor {?(,, = 
the second in- 

(7) 

is directionally 
independent, i.e. isotropic, and is valid for isotropic 
fluids only. However, from the observed polymer- 
solution structure, while under shearing (see Fig. 2) 
it is obvious that polymer chains will be realigned in 
a preferable flow direction, making the fluid structure 
and resistance to flow (i.e. viscosity) directionally 
dependent, i.e. anisotropic. It should be obvious, at 
least for such kind of polymer solutions (and probably 
for many others as well), that resistance to cross- 
flow (with macromolecules aligned in axial main-flow 
direction) should be much higher (at least as qo) than 
the resistance to axial flow. The fluid is ‘shear-thinned’ 
in one direction, producing flow-induced anisotropic 
structure and anisotropic viscosity. At least for such 
fluids, it would be simpler, more realistic, and more 
accurate (requiring less extrapolation of isometric 
flow) if the shear rate magnitude Jo of equation (7), 
used in the viscosity function of equation (6), is 
expressed as magnitude of the corresponding com- 
ponent of shear-rate tensor: i.e. for the shear-stress 
z ,.I) the shear-rate magnitude jl = Iji,,l. This way, the 
viscosity will be directionally dependent (anisotropic), 
i.e. it will be a function of the corresponding 
shear-rate component 

'li.j = V(l$t.,l)~ (8) 

Indeed, the conventional extrapolation of isometric 
(one-dimensional) viscosity measurements to multi- 
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dimensional flow situation, using an invariant shear- 
rate magnitude, made the viscosity shear-rate 
dependent and non-uniform. However, the obvious 
flow-induced anisotropicity is overlooked. It is not 
unfair to state that measured properties in an isometric 
flow are safely applicable to one-directional flow only, 

beyond which proper justification is necessary. Fur- 
thermore, for a motionless solution (shear-rate is zero 
for all directions), the so-called zero-shear-rate vis- 
cosity will be isotropic, complying with the random 

orientation of macromolecules. After all, if the fluid 
structure is isotropic the fluid properties have to be 
isotropic, and vice versa for an anisotropic fluid struc- 

ture. The flow-induced anisotropic fluid structure, 
consequences of which are anisotropic viscosity, 
dynamic viscosity, and other (higher-order) viscosity 
and stress coefficients, may play a major role in chang- 

ing the turbulence structure and other flow patterns, 
thus influencing the momentum and heat transfer 
processes. 

4. ENHANCEMENT OF HEAT TRANSFER IN 

LAMINAR FLOW OF VISCOELASTIC 

FLUIDS IN NON-CIRCULAR DUCTS 

The fully developed laminar flow of Newtonian 

fluids in non-circular channels of constant cross-sec- 
tion is a relatively simple flow.in the absence of body 

forces. Furthermore, it is known that the ela,stic prop- 
erties of a fluid do not play a significant role with 

regard to the friction factor and heat transfer in fully 
developed laminar flow of a viscoelastic fluid through 
circular ducts. Therefore, the correlations developed 

for power-law non-Newtonian fluids may be used in 
that case [3, 81. In contrast, the fully developed lami- 

nar flow of a rheological complex fluid in a non- 
circular duct turns out to be a complicated flow when 
accompanied with heat transfer process (non-iso- 
thermal flow). The most effective friction factor analy- 

sis has been provided by Kozicki et al. [13, 301, who 
generalized the Rabinowitsch-Mooney equation for 
non-Newtonian fluids, including the special case of 
the power-law fluid flow in arbitrary but constant 
cross-section straight duct. They introduced a new 
Reynolds number by which the friction factors, for 
the fully developed laminar flow of the power-law 

fluids and for different ducts, are given by a unique 

equation : 

.r=$ 

The values a* and b*, dependent on the duct’s cross- 
sectional shape, are given for different aspect ratios of 
rectangular ducts in ref. [13] and to a fuller extent and 

more precisely in ref. [27]. For example, the values 01‘ 
a* and b* are 0.25 and 0.75 for circular. 0.2121 and 
0.6771 for square, 0.2439 and 0.7278 for 5: I aspect 
ratio rectangular duct, and 0.5 and I.0 for parallel 

plates, respectively. The other quantities are defined 
in the Nomenclature above. 

The experimental measurements with non-New- 

tonian fluids [18-231 reveal that the laminar friction 
factors are well predicted by Kozicki’s correlation for 
the power-law non-Newtonian fluids (equation (9)). 

but heat transfer results lie well above the correspond- 
ing predictions. Several investigators have suggested 
that increased heat transfer is probably due to a secon- 

dary flow resulting from the viscoelastic behavior 
of the fluids studied. Such viscoelastic fluids exhibit 
the so-called normal stress differences that could give 
rise to increased heat transfer. Such secondary flow 

has been predicted by Green and Rivlin [31], and 
there is considerable evidence [32-361 to support its 
existence. Hartnett and Kostic [ 18, 221 have reported 
local heat transfer Nusselt numbers for a rectangular 
duct of 2: 1 aspect ratio with the upper and lower 

walls symmetrically heated. Their results, shown in 
Fig. 3(a), reveal little difference in heat transfer 
between the upper and lower walls, and the values are 
considerably higher than the predictions which allow 

for the corresponding free convection effects. Fur- 
thermore, the influence of free convection and the 

shear thinning effects are ruled out by previous 
research, with comparative experiments using New- 
tonian and non-Newtonian fluids and upper wall 
heated only to suppress free convection (see Fig. 4) 

[29]. For example, if upper and bottom walls were 
heated only, the fully developed Nusselt numbers were 

4.8 and 11.4 for the top and bottom wall, respectively, 
using a Newtonian fluid, while the corresponding 
values were 14.2 and 17.3 for a polymer solution (see 
Fig. 4). The difference between the bottom and top 
wall results is due to free convection effect. but the 

substantial increase of both values, in particular the 
top wall value. so much beyond a corresponding 
forced-convection value of about 5 for the polymer 
solution, cannot be accounted for by free convection 
effect alone. There should be a different and more influ- 
ential cause than the density-driven natural con- 

vection, most probably elasticity and/or anisotropicity 
of the fluid. 

It had been reported [33. 351 that non-drag-reduc- 

ing, polyacrylic acid (Carbopol) aqueous solutions 
showed even stronger enhancement of heat transfer 
than the drag-reducing polyacrylamide (Separan) 
solutions (see Fig. 3(b)). This finding came as a sur- 
prise because the Carbopol solutions do not show 
turbulent drag reduction ; hence, they were mistakenly 
considered as purely viscous non-Newtonian fluids. 
Consequent measurements of the phase shift using 
an oscillatory viscometer/rheometer revealed that the 
Carbopol solutions are indeed viscoelastic. Recently. 
Gingrich et al. [37] have analysed computationally 
the effect of shear thinning on laminar heat transfer 
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q = 2.5 595.3 6.26 1.0 water 
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FIG. 3. Local Nusselt numbers vs Graetz numbers for: (a) laminar flow of aqueous polyacrylamide 
(Separan) solution [I& 291, and (b) aqueous Carbopol solutions [35] in 2: 1 rectangular duct. 

behavior of inelastic non-Newtonian fluid flow in vection or of shear-thinning and/or temperature-vari- 

a rectangular duct, and have found substantial able fluid properties alone. Most recently, Payvar [36] 

heat transfer enhancement (around 100% for non- has conducted a computational study, taking into 
dissipating flow), though still considerably lower than account the influence of the normal stress coefficients 
corresponding viscoelatic fluids’ augmentation of on heat transfer in laminar flow of viscoelastic fluids 

20&300%. Also, Shin et al. [38] have found a in rectangular ducts. His initial findings, quite inter- 
heat transfer enhancement of 70-80% (over those of estingly, show that a weak secondary flow, driven 
constant-property flow) for a high Prandtl number mainly by the smaller second normal stress coefficient, 
Newtonian fluid flow due to temperature-dependent is responsible for considerable heat transfer enhance- 
fluid viscosity only. Nevertheless, the observed 2O(r ment with virtually no increase in friction drag. More 
300% heat transfer augmentation for viscoelastic non- and more similar computational studies will be per- 
Newtonian fluid flow in non-circular channels could formed in the future, necessitating a need for reliable 
not be accounted for by influence either of free-con- experimental work. 
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FIG. 4. Measured local Nusselt numbers vs dimensionless axial distance for laminar flow of water and 
aqueous polyacrylamide (Separan) solution in 2 : 1 rectangular duct [I& 291. 

5. A CONTRADICTORY ROLE OF FLUID 

VISCO-ELASTICITY IN DRAG REDUCTION 

AND SOME (FACTUAL) SPECULATIONS 

The fact that the asymptotic friction and heat- 

transfer factors are much closer to the corresponding 
extended-laminar results than to the corresponding 
turbulent Newtonian results, suggests that the addition 

of polymer (or other additives) decreases the turbulent 
energy-dissipation, thereby laminarizing the turbulent 

flow. This is also consistent with the observed high 
values of the transitional Reynolds number, hydro- 

dynamic- and thermal-entrance lengths. 
In addition to the above, this author would like to 

emphasize the importance ofjow-induced anisotropic 
fluid structure and properties. Even though tur- 
bulence is a three-dimensional phenomenon, a sim- 
plified two-dimensional model is used (see Fig. 5(a)), 
representing the main-flow fluctuating velocity com- 
ponent, u’, and cross-flow component, u’, while the 
third, also cross-flow, component w’, having a similar 
effect as v’, is omitted for simplicity. Then, the momen- 
tum and heat transfer due to turbulent fluctuating 
velocity components may be expressed as : 

ST zz - p u’uf qr = -p cp TV’. (11) 

The momentum transfer (i.e. the drag reduction) 
depends on both fluctuating velocity components, u’ 
and 17’. The heat transfer (i.e. the heat-transfer 
reduction) depends on the c” fluctuating velocity com- 

ponent only. Due to anisotropic fluid structure and 
properties, the resistance to cross-flow (0’ direction) 
is stronger than in the main flow direction, producing 
non-homogeneous turbulence (u’ CC u’). We may pos- 

(a) 04 

FIG. 5. Non-homogeneous turbulence due to flow-induced 
anisotropic fluid properties: (a) v’ CC u’ ; (b) limiting case, 

Z” = 0. 
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tulate that the fluctuating turbulent velocities depend 
on the concentration of macromolecules (or fiber 

‘threads’) in the solvent. With increase of polymer 
concentration, the mean product of the velocity com- 

ponents u’u’ reaches its asymptotic value. This limiting 
case corresponds to the so-called maximum friction- 
drag reduction asymptote. By further increase of poly- 
mer concentration the mean product of the T’u’ will 
reach its asymptotic value, corresponding to the 
maximum heat-transfer reduction asymptote. The 

relative influence of the ZJ’ and v’ turbulent fluctuations 
will be clearer if we consider the following limiting 
case (see Fig. 5(b)). Let us imagine that component 
u’ exists while component v’ vanishes completely. In 

this limiting case there will be no transfer of fluid 
particles or turbulent heat-transfer in the cross-flow 

direction. The flow, in the sense of the old Reynolds 
experiment, will behave as laminar (injected dye will 
not mix between the layers of main-flow). However, 
the friction drag (i.e. friction factor) will be somewhat 

higher than in the laminar flow due to the additional 

particle shearing (i.e. the back-and-forth fluctuating 
relative-motion between the layers). Furthermore, the 
cross-flow turbulent heat transfer depends on the v’ 

fluctuating velocity component only, and for the 
above limiting turbulence model, the cross-flow heat 
transfer will be by conduction alone, as in laminar 
heat transfer. Therefore, it is not surprising that the 

heat transfer reduction in drag-reducing flows is 
higher than the reduction in friction drag itself. It has 
to be noted that the above limiting non-homogeneous 

turbulence (Fig. 5(b)) cannot occur in reality (the 
continuity equation is not satisfied), but it does pro- 
vide a new insight into the physics and trends of 
actual phenomena when the cross-flow turbulent 
velocity components v’ and w’ are much smaller than 

the main-flow fluctuating component u’. 
Several up-to-now unanswered questions are raised 

in Table 4. A number of speculations will be set forth 
along with some supporting facts. 

(1) It is unlikely that fluid viscoelusticity plays a 
major role in turbulent drag reduction phenomena, if 
at all. Aqueous solutions of polyacrylic acid (Carbo- 
pol) are viscoelastic but do not show drag reduction 

(Carbopol anomaly, but is it?). It is known that non- 
elastic fluids (including very dilute polymer solutions 
and some gas suspensions) show considerable drag 
reduction. It may well be that the two phenomena, 
drag reduction and viscoelasticity, are independent 
but accompanying properties of certain fluids. 

(2) The wall influence is important, but not a deter- 

mining factor of drag reduction. Drag reduction is 
associated with certain fluids, not with certain walls 
or boundaries. Turbulence suppression is present in 
boundary layer flows as well as in jet and other free 
turbulence flow situations. 

(3) The drag reduction associated with internal 
and external boundary layers may be fundamentally 
different. In external boundary layer flows, the bound- 

ary influence and the laminar sublayer are probably 
predominant. However, in internal boundary layer 
flows, as in channel flows, the turbulence structure 
(dissipation) within the enclosed interior determines 

the overall flow by shaping the sublayer accordingly. 
The turbulent friction factor is determined by inte- 
gration of the universal velocity profile over the cross- 
section, while the contribution of the laminar sublayer 
may be neglected. In the opinion of this author, the 

laminar sublayer in internal duct flow is the conse- 
quence of internal flow activity, not the other way 
around. The sublayer simply adjusts to balance the 

internal stresses, mainly due to overall turbulence in 
a duct. Attempts to unify the internal and external 

boundary layer flows may be impossible and therefore 
deceptive. The similarity between the two universal 

velocity profiles may be merely due to the coarseness 
of the log-log scaling. 

(4) In some flow situations the so-called ‘onset’ of 
drug reduction is present. In such flows the drag 

reduction does not start with transition to turbulence, 
but rather is postponed and occurs at some larger 
Reynolds number than the transitional. Though, this 
phenomenon is not fully resolved, the present author 

agrees with the existing thoughts that some critical 
shear-stress is needed to realign or untangle the addi- 
tive ‘threads’ or macromolecules in the main-flow 

direction. 
(5) Why do the friction and heat-transfer reduction 

show certain asymptotic limits, without achieving the 
ultimate possible (100%) reduction, i.e. why cannot 

the additives totally suppress flow instability and tur- 
bulence and transfer a high Reynolds number flow 
in the laminar regime (extended laminar flow)? One 
possible answer would be : depending on the additive 

‘thread’ properties, the additives interfere only with 
the smallest turbulent eddies (those most responsible 
for energy dissipation-friction drag), while larger- 

scale instabilities and turbulence remain. The former 
explains the achievement of considerable friction- 
drag reduction, while the latter justify the turbulence 

presence and the difficulties in achieving total lami- 
narization. The natural existence of turbulent drag 
reduction gives us an inspiration to look for additional 

(possibly artificial) and more efficient additives which, 
one day, may transfer some existing turbulent flows 
into ones without turbulence, the extended-laminar 
flows. 

(6) Why is the asymptotic heat-transfer reduction 
stronger than the asymptotic friction-drag reduction? 
One possible explanation may be a non-homogeneous 
turbulence, due to the flow-induced anisotropicity of 

fluid structure and properties. Since the drag reduc- 
tion depends on the main-how fluctuating velocity 
component u’, and the cross-flow components v’ and 
w’, while the heat-transfer reduction depends on 
the cross-flow velocity components only. Since the 
v’ and w’ components are more suppressed by the 
flow-induced anisotropic fluid structure than u’, that 
would result in the stronger heat-transfer reduction 
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than the friction-drag reduction. Another reason may 
be found by examining the newly defined drag and 
heat transfer increases for turbulent flow (see DI, 

and HI, values in Table 6). It is interesting that the 
increase of heat transfer due to turbulence in New- 
tonian fluids is much higher (five times or more) than 

corresponding friction drag increase, giving more 
‘room’ for heat-transfer reduction as compared to 
friction-drag reduction. even for the same level of flow 
‘laminarization’. 

6. CONCLUSION 

In conclusion, the present author would like to 

emphasize several points. 

(a) If there were not wasteful turbulent energy- 

dissipation, there could not be any friction-drag 
reduction. There is not and there could not be room 
for drag reduction in laminar flow. The new insight is 

achieved with the above ‘upside-down-analysis’. After 
all, the ‘miraculous’ drag-reducing fluids/flows are 
not ‘energy-savers’-they are just ‘not as bad as 
Newtonian turbulent flows’. 

(b) No matter what mechanism is used to describe 
drag and heat-transfer reduction phenomena, it ulti- 
mately results in less turbulent energy dissipation. We 

riced to ask ourselves, ‘what is turbulence, after all?‘. 
It is thts author’s understanding that turbulence is 

that dissipative flow mechanism which ‘breaks and 
damps’ large-scale flow instabilities. considerably 

increasing the friction drag and heat transfer as com- 
pared to laminar flow. Therefore, whether the drag 
reduction is called molecular or vortex ‘stretching’, or 
decrcascd turbulence production or suppression, in 
its essence it has to be turbulent flow laminarization. 
Large-scale instability does exist in the drag-reducing 
flows, but the most important part of turbulence- 
the smallest eddies-arc considerably eliminated by 
the additives, and the proof is the substantially 

reduced friction drag. Therefore, the answer has to 
be: the reduction phenomena are in essence a tur- 

bulcnt flow laminarization! 

(c) This author tends to believe that the determining 
factor of drag reduction phenomena and turbulent 
flow laminarization is a ‘thread-like’ additive structure 

in solvents. which produce flow-induced anisotropic 
structure. the consequence of which are anisotropic 

fluid properties, including but not limited to steady 
and dynamic viscosities. This is rather obvious for 
higher concentrations of linear polymer solutions. 
Since turbulence is the outcome of flow instability, 
even properties’ gradients (and/or the higher order 
coefficients) may play an important role beyond their 

absolute values. 
(d) The significant (200&300%) heat transfer aug- 

mentation in laminar, non-circular duct flows of poly- 
mer solutions, without penalty of increased friction 
drag, is a quite different phenomenon from drag and 
heat transfer reduction. The laminar heat transfer 

enhancement is not present with very dilute turbulent 
drag-reducing solutions, though it is evident in non- 
drag-reducing, cross-linked polymer solutions, like 
polyacrylic-acid (Carbopol). On the basis of the well- 
known analogy of momentum and heat transfer in 
turbulent flow, one may even suspect the corrcctncss 

of the observed phenomenon of manifold heat trans- 
fer augmentation with virtually no friction drag 
increase. However, the considerable heat transfer 

enhancement is observed in laminar non-circular duct 
flow, where the friction drag is primarily due to the 
main axial flow. This author hypothesizes that a trans- 

verse/circumferential secondary flow ought to exist. 
though of small magnitude with regard to the main 
flow, so that friction drag is hardly increased. 
However, such a weak secondary flow may consider- 

ably enhance the heat transfer, which is in transvcrsc 
direction and is otherwise mainly due to heat con- 
duction through the fluid laminae. The secondary 
flow’s influence on significant heat transfer augmenta- 
tion is also enhanced by the high Prandtl number 

value of these fluids. Due to the complex, viscoclastic. 

and anisotropic properties of these fluids. such a 
secondary flow hypothesis must bc validated by 
careful experimental measurements of patterns and 
magnitudes of such (non-isothermal) flows. 

In summary, not all drag-reducing fluids arc visco- 
elastic (very dilute solutions, solid-gas suspensions). 
nor are all viscoelastic fluids drag-reducing (Carbopol 

solutions). This suggests that the drag reduction and 
viscoelasticity are probably incidentally accompany- 
ing phenomena. However. considerable heat transfer 
enhancement in laminar non-circular duct flow, dis- 
covered in the limited research performed to date. has 
shown that all utilized fluids were indeed viscoclastic. 
Further research in this area may help in establish- 

ing design methods for a wide range of equipment 
handling the non-Newtonian and/or viscoelastic 
fluids, which arc very common in the chemical. phar- 

maceutical, biomedical and food-processing indus- 
tries New advancements in electronic equipment 
cooling, compact heat exchangers, and other areas of 
rhcological and electro-rheological fluids application 

are also possible. 
One more thought on these very complex fluids and 

even more complex flow phenomena: the phenom- 

enological determination of classical rheological 

properties (viscosity function and higher stress co- 
efficients) is certainly insufficient to characterize the 
behavior of very dilute drag-reducing fluids. Flow- 
induced anisotropicity associated with the small-scale 
or microscopic fluid structure. is most probably the 
determining influence of drag and heat transfer 
reduction, not the fluid visco-elasticity. However, in 
laminar non-circular duct flow, the rheological 
(phenomenological) fluid properties, including aniso- 
tropic viscosity and elasticity, are responsible for 
enhanced flow and corresponding heat transfer 
phenomena. Many more authentic questions may bc 
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raised, and only some answers may be ventured on 

the basis of limited facts. However, this author also 

believes that nature usually works much simpler than 
what we sometimes presume. Numerous diverse fluids 

and Row situations only add to the confusion sur- 
rounding these complex phenomena. It is certain that 
many challenges in this interesting and useful area will 
keep researchers very busy well into the next century 
and beyond. 

A~kn~)~~fe~qement-The author is indebted to his former 
advisor, Professor James P. Hartnett of the University of 
Illinois at Chicago, with whom he had been associated for 
several years. and whose continuous counsel is greatly 
appreciated. This paper is written for the occasion of Jim 
Hartnett’s 70th birthday, on 19 March 1994. 
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